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Abstract. The nature of electronic stares in disordered two-dimensional (ZD) systems is 
investigated. With this aim. we pment our calculations of both density of states and 
d.c. conductivity for square lauices modelling the Anderson Hamiltonian with on-site energies 
randomly chosen from a box distribution of width W. For weak disorder (W, the eigenfunctions 
calculated by means of the Lanczos diagonalization algorithm display spatial RucNalions 
reflecting their (multi)fmtal behaviour. For increasing disorder the observed increase of the 
curdling of the wavefunction reflects its stronger lowlizatioo. However. as a function of energy, 
the cigenstateh at e w e y  lE\/V = 1.5 are found to be the least localized over the band. Our 
d.c. conductivity results suggest a critical fractal dimension d: = 1.48 i 0.17 to discriminate 
between the exponentially and the power-law-locaked states. Consequences of the locdizarion 
for m s p o n  properties are also discussed. 

1. Introduction 

Since the formulation of the one-parameter scaling hypothesis of localization by Abraham 
et a1 [I], the subject of Anderson localization has attracted increasing interest with a rapid 
development of new theoretical and experimental approaches. The scaling hypothesis [ 11 
predicts a metal-insulator transition WIT) to occur only in 3D systems and an exponential 
localization of all eigenstates (with the localization length A) for any arbitrary small but finite 
disorder in two- and one-dimensional systems. However, the latter behaviour is very difficult 
to detect if the corresponding localization length A is macroscopically large as is the case 
when diminishing the strength of disorder in 2D systems. Thus, here, it appears questionable 
[ 2 4 ]  whether the concept of exponentially localized states is reasonable in the weak-disorder 
limit In this respect, Kaveh and Mott [S, 61 have argued for a two-parameter scaling theory 
giving a well defined ‘pseudomobility edge’ separating two types of localized state-the 
exponentially localized states away from the band centre and algebraically (power-law-) 
localized states towards midband. This is in agreement with the experimentally determined 
p function of Davies et al [7]. Both of the above characteristics can be accommodated, 
however, if one associates an exponential envelope function with large A with the 
power-law-localized state Y - r-* . Then the power-law decay would govern the character 
of the wavefunction at small distances while the asymptotic exponential behaviour dominates 
at large length scales. Hence this exponential factor would have the side-effect of producing 
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a normalizable wavefunction. In fact it becomes a general belief [S, 91 that homogeneously 
extended states (and correspondingly a mobility edge) exist only in 3D systems for weak 
disorder and in 2D systems with inclusion of a strong perpendicular magnetic field. 

There has always been a problem of how to characterize the wavefunctions in a weakly 
disordered system. One characterization is the localization length A, which describes 
the exponential decay of the localized state. Another is the correlation length 5 ,  which 
describes the spatial extent of the correlations in the amplitude fluctuations of the extended 
state. On the other hand, to describe the spatial extent of the localized wavefunction 
by an exponential decay length has suffered not only from the difficulty of computing 
reasonably large systems (of the order of A) but also from strong spatial fluctuations of 
the amplitude of the wavefunction which correspond to the fluctuations of the extended 
wavefunction. These fluctuations are therefore a characteristic feature of the wavefunction 
in a disordered system and have been believed to mask-at least on small length scales- 
the homogeneously extended or the exponentially localized behaviour. At the mobility 
edge, in 3D systems, these fluctuations occur on all length scales larger than the lattice 
spacing. This has led to the suggestion that they display self-similar fluctuations (i.e., they 
are fractal entities). This idea was first suggested by Aoki [9] and was corroborated by 
numerical investigations [lo, I I]. Furthermore, the calculation of the generalized fractal 
dimensions and the singularity spectrum of the fractal measure [ I l l  have confirmed the 
multifractal behaviour of the wavefunctions at the mobility edge in 3D systems. This yields 
a comprehensive picture to describe the continuous transition from exponentially localized 
to homogeneously extended states. In particular, as the traditional assumption of exponential 
spatial decay of the localized wavefunctions may not reflect the most significant features, 
the multifractal description becomes necessary for their correct characterization. 

The fractal behaviour of the eigenstates has been observed not only at the mobility edge 
but more generally also for the short-range fluctuations of the wavefunctions in disordered 
systems up to length scales of the order of localization length A and the coherence length 
of localized and extended states respectively [ 10, 121. This was demonstrated for extended 
states [12, 131 as well as for localized states in 1D [I41 and 2D [IS, 161. In this context, 
we would like to emphasize that there still exists some controversy about the multifractality 
of localized states and in general all states away from criticality. However, the task of 
analysing this issue has always been complicated by the obvious difficulty of dealing with 
finite-size numerical realizations. This has limited several authors to study mainly one- 
dimensional systems. For instance, Pietronero ef a1 [I71 have shown in their multifractal 
analysis of the weakly disordered ID Anderson wavefunctions the absence of self-similarity 
for the space fluctuations and multifractality for the disorder fluctuations in full analogy with 
the properties of the multiplicative random walk. Following the same analysis but using an 
incommensurate potential (that yields a transition for all states from extended to localized as 
a function of the amplitude of this potential), Siebesma and Pietronero [IS] have shown the 
multifractality not only at the critical point but also for extended and localized wavefunctions 
up to the correlation length and localization length respcctively. This situation is analogous 
to 3D systems and should provide indirect support to the multifractality of the states 
away from the mobility edge. On the other hand, Mato and Car0 [I41 have calculated 
the generalized dimension D ( q )  and the singularity spectrum for ID weakly disordered 
wavefunctions and have shown their multifractal character. This, indeed, contradicts the 
view [19] that multifractality is associated with the critical phenomenon of crossing the 
mobility edge in (2 + €)-dimensional systems. Roman [20] also attempted to discover the 
multifractality of localized ID wavefunctions but concluded from his multifractal analysis 
that, in spite of the spatial fluctuations, a ID wavefunction is essentially a uniform object. 
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The same author claimed [21] the same view using the partition function t 4 ( L ) .  However, 
since it is a delicate task to determine the mass exponents ~ ( q )  of t q ( L )  from the doubly 
logarithmic plots of t&) - L-r(4), Schreiber and Grussbach [22] studied the singularity 
spectrum f(a) which can be determined with sufficient accuracy in terms of q. Theu 
singularity spectrum is typical for multifractal entities. The mass exponent ~ ( q )  was 
obtained by means of Legendre transformation of f(or). This latter quantity also proves a 
multifractal character. Hence, it is not surprising that 2D wavefunctions are considered to 
have multifractal properties in this paper. 

The multifractal behaviour of weakly localized wavefunctions was corroborated by the 
calculation of the singularity spectrum f(a) for ID 114, 221 and 2D [23]. Furthermore, we 
should note the fundamental difference between 1D and 2D disordered wavefunctions In 
the weak-disorder limit, both wavefunctions w1 be expanded in terms of Bloch functions. 
Within the one-band approximation, the 1D wavefunction consists of two Bloch functions 
of wavevectors k = rtm with small admixture of other Bloch functions close in 
energy. This admixture reflects the influence of the weak disorder. On the other hand, the 2D 
wavefunction consists of a linear combination of a much bigger number of Bloch functions 
possessing approximately the same energy, E N @*/Zm)(k: + k;) .  As a consequence, 
fluctuations appear at all length scales, because small and large wavevectors contribute. 
Moreover, it is important to note that the localization length in 2D can be macroscopically 
large even for disorders, W, which are not very small (see table 1). This, in fact, suggests 
the possibility of multifractality on length scales up to this macroscopically large localization 
length. Of course, the question which remains is to understand what happens in the 
thermodynamic limit. Probably, one gets an exponentially localized wavefunction which 
shows multikactal behaviour only on small scales. Lastly, we note that the singularity 
spectrum of the 2D wavefunction [23] is more symmetric than that of the 1D wavefunction 
[22]. The former is more like a parabola in shape, reflecting the fact that the multifractal 
character of the fluctuations is more prominent because the localization length is larger and 
therefore the range of length scales on which the multifractality manifests itself is larger. 

Table 1. The localization lengths and corresponding iraclal dimensions at the midband ( E  = 0) 
for a square lattice, interpolated from figures 5(a) and 5(b) respectively for various disorder 
strengths W used in OUT p a n t  work. 

I 
1.8 
2 
2.6 
3.6 
4 
5.2 
55 
6 
6.2 
6.7 
7.3 
8 

10.4 
16 

2 7  x 108 
> 7  x 108 

6.34 x 108 
1.56 x I@ 

4328.0 
1123.0 
125.8 
94.1 
41.3 
37.7 
28.5 
20.4 
10.9 
5.0 
1.7 

,106 
2106 
,106 

2.18 x 105 
2911.4 
1027.7 
137.8 
88.0 
51.3 
43.9 
28.6 
18.9 
12.5 
5.5 
2.0 

2106 2 1.85 
>IO6 1.85 

7.99 x IO5 1.84 
2.6 x lo4 1.80 

1137.7 1.71 
481.0 1.70 

82.0 1.53 
58.6 1.48 
37.5 1.41 
32.8 1.37 
22.9 1.31 
16.3 1.20 
11.1 1.08 
4.9 0.67 
1.9 - 

In this respect, the fractal character of the wavefunction was proposed [IO,  121 as a new 
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method for finding the mobility edge. Later, when the multifractal characteristics became 
appreciated, a particular singularity spectrum was assumed as a signature of the metal- 
insulator transition [ I l ,  131. This was corroborated by the investigation of various systems 

The transport properties are, of course, drastically influenced by the (mu1ti)fractal 
behaviour. The question which is raised here is which fractal dimension (among the set of 
multifractal dimensions) is significant for the description of the transport properties. Several 
authors [25, 261 have suggested the correlation dimension (this point is discussed further 
below). 

This latter idea was numerically exploited by several authors, determining the fractal 
dimension from either the density-density correlation function [IO] or, equivalently, the 
participation number [12], or from the amplitude of the wavefunction [27]. We note that 
the correlation dimension should coincide with the fractal dimension determined from 
the participation ratio calculation [28]. Calculating the fractal dimension d" from the 
participation number in 3D systems for various disorder strengths [29], it was possible 
to estimate a critical fractal dimension d: = 1.6 & 0.1 corresponding to the metal-insulator 
transition (i.e., eigenfunctions which yield a lower fractal dimension are localized and those 
which yield a higher one are extended). From this dimension, the trajectory of the mobility 
edge in the disorderenergy (W-E) diagram could be derived. This calculation also confirms 
that the transition between the extended states, through the fractal regime, to the strongly 
localized states is smooth. The result d' = 1.6 corresponds to a critical disorder W, N 21 
(which is reasonable for the employed Gaussian distribution of the diagonal elements of the 
Anderson Hamiltonian) and yields a mobility edge trajectory in good agreement with the 
results of the finite-size scaling approach [30]. 

It is interesting to note the difference in the physics and dimensionality between thc 
terms fractal and fracton. First of all, fractals can be classified as deterministic or random 
depending on whether the self-similarity is exact or considered as a stochastic property. 
For instance, diffusion-limited aggregation (DLA), percolating networks, king spin systems 
and fluctuations of the amplitude of the wavefunction in disordered systems present some 
typical examples of random fractals. The fractal dimension, d,, describes how the mass of 
the geometrical object depends on its length scales. In more general terms, the fractal 
dimension reflects the scaling of the moments of the mass. In our investigation, we 
concentrate on the fractal dimension d' of the participation ratio which coincides with 
the fractal dimension of the second moment of the mass. It can be shown [28] that in the 
present model this dimension d' is also equivalent to the fractal dimension of the density- 
density correlation [ 101. That is not equivalent, however, to the fractal dimension of the 
mass but is a consequence of the multifractality [ l l ] .  Only for a homogeneous fractal, 
not for a multifractal, would these values coincide. In contrast the fracton dimension 
d characterizes anomalous diffusion on the fractal substrate. This fracton dimension is 
connected to df by the relation [31] d = 24+/(2 + e),  where 0 is the exponent giving the 
dependence of the diffusion constant on distance. The term 'fracton', in fact, denotes a 
localized vibrational mode peculiar to a fractal structure, coined by Alexander and Orbach 
[31]. These excitations exist not only for vibrational systems but also for, e.g., dilute 
magnets [32]. Moreover, Alexander and Orbach [31] noted that the fracton dimension d 
for percolating networks was numerically close to the mean-field value d E;: f for any 
Euclidean dimension d > 2. This came to be known as the Alexander-Orbach conjecture. 
Immediately after this work R a m a l  and Toulouse [33] developed an analogous scaling 
method (based on the scaling theory of localization of Abrahams et al [ I ] )  to calculate the 
vibrational density of stales (DOS) and the mean number of sites visited by a random walker 
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on a fractal network as substrate. These latter quantities were both shown to be characterized 
by the same fracton dimension d. Thus d reflects the scaling of the spectral density of the 
fracton vibrations. This is why d is also called the spectral dimension. This notion of the 
fracton was further corroborated by the largescale computation of Yakubo and Nakayama 
[34], who performed calculations of the DOS for 2D and 3D percolating networks of size of 
the order of N - IO5 sites. Their results showed that the frequency dependence of the DOS 
can be characterized by two regimes. (i) In the high-frequency regime (w >> wc),  the DOS is 
closely proportional to d3 and independent of the Euclidean dimensionality. The crossover 
frequency w, corresponds to the mode of wavelength A equal to the percolating correlation 
length 7'. (ii) In the low-frequency regime w << w,, however, the DOS is given by the 
conventional Debye law D(o) cx wd-' ,  where d is the Euclidean dimension of the lattice, 
whereas D(w) E w"' for w >> w, with d = $. This work, hence, has numerically supported 
the Alexander-Orbach conjecmre and shown that vibrational excitations, whose wavelength 
A is smaller than the percolation correlation length I and which therefore exist in the high- 
frequency regime, are localized and called 'fractons'. Note that as soon as A becomes longer 
than I ,  the vibration exhibits a transition from a fracton to a phonon (delocalized vibrational 
mode). Lastly, we briefly summarize that the term 'fracton' introduced by Alexander and 
Orbach [31] stands for an anomalous diffusion on a percolating fractal network, and has 
been theoretically predicted through both scaling arguments [31, 33, 351 and large-scale 
simulations [34], and has been experimentally observed using both light [36] and inelastic 
neutron [37] scattering measurements. Moreover, as the fracton is supported by a fractal 
network one always expects that d < df  < d. For the Anderson model on a regular lattice, 
however, the fractal dimension d, is equal to the Euclidean dimension d .  In the rest of the 
paper, we discuss therefore the most important generalized dimension d' of the multifractal 
wavefunction. As mentioned above, d' is obtained from the participation ratio calculation 
[16], and is equivalent to the dimension calculated from the density in [lo]. 

The scope of this paper, however, is to readdress the question of searching for the 
critical fractal dimension d,* (in absence of magnetic field), which can discriminate between 
the exponentially and the power-law-localized states in 2D systems. For this task, we 
employ the Anderson Hamiltonian with on-site energies taken from the box distribution. We 
calculated both the density of states and the d.c. conductivity, based on the Kubdreenwood 
formula, versus energy and disorder (W). Our calculations were performed on square lattices 
containing numbers of sites ranging &om 300 to 1OooO sites. The d.c. conductivity results 
are used to search for the critical disorder W,, above which the midband states become 
exponentially localized. (Here our conductivity reference for localization is taken to be 
Molt's minimum metallic conductivity, umi,.) We used the obtained W, of the largest 
sample (of size N = 100 x 100 sites) and by interpolating the results of fractal dimension 
d*(E) of [16], we estimated a critical fractal dimension d,' = 1.483r0.17 to separate between 
the exponentially and the power-law-localized states. 

In the next section we describe the model and the calculations of both density of states 
and d.c. conductivity. In section 3, we present and discuss our results. The last section 
summarizes our conclusions. 

2. Computational details 

Our investigation is based on the Anderson model, commonly used to study the localization 
of the wavefunctions in disordered systems. In site representation, the ~ one-electron 
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Hamiltonian is given by 

N l i t  and M Schreiber 

where the on-site energies are randomly chosen from a box distribution of width W, 
reflecting the strength of the disorder. The bansfer integrals V,,, = V are restricted to 
nearest-neighbour sites n and m only, as indicated by the brackets ( ), and define the energy 
scale (V  = 1). At vanishing disorder, one expects the energy spectrum to extend from -v  
to v ,  where v is the number of nearest neighbours. 

The energy spect” of the Hamiltonian ( I )  and the corresponding wavefunctions 
are calculated using a direct diagonalization procedure based on the Lanczos algorithm 
[38]. This diagonalization method is known to be very efficient for large sparse matrices. 
We applied this method to the Hamiltonian (1) for square lattices with periodic boundary 
conditions. 

We used the obtained energy spectrum to calculate the density of states: 

N ( E )  = CS(E - E p )  (2) 

where p labels the eigenstates of the Hamiltonian. Both eigenvalues and eigenvectors of 
the Hamiltonian are needed to calculate the d.c. conductivity, which is given [39] by the 
Kubo-Greenwood formula, for a noninteracting electron system within the linear response 
theory at T = 0 K (with EF = E )  

r 

Here the polarization is taken in the direction of the x-axis, p and U label eigenstates, P* 
is the momentum operator (P”/m = -(i/h)[x. HI), Q is the volume of the sample, and H 
is the Hamiltonian (1) of the system. We note that we have performed ensemble averaging 
over different realizations of the random potentials for both quantities (2) and (3). The 
number of realizations varies from 256 to eight realizations (per half band) corresponding 
to the smallest ( N  = 300 sites) and largest ( N  = 10000 sites) samples, respectively. 

3. Results and discussion 

We first display in figure 1 the obtained probability amplitudes of (sums of) eigenstates of the 
Hamiltonian (1) on square lattices of size 50x50 sites for various parameter combinations of 
energy and disorder. These figures (l(a)-(f)) are obtained by averaging over the mentioned 
realizations and over all eigenstates in an energy window of AE = 0.1. Hence each of them 
represents a wave packet of eigenfunctions. In all these density plots we show only sites 
for which the amplitudes are larger than the average ( U f l ) .  The darker the square dots 
the higher the amplitudes of the wavefunctions are. The white regions are areas of weak 
probability density. The figures l ( a H f )  demonstrate the fragmentation of the probability 
density of the wave packets. This is a behaviour typical for fractal entities. However, in 
displaying these figures we are not attempting to prove the (mu1ti)fractality because it is out 
of the scope of this paper and to do this one should either employ the original definition of 
Hausdoff measure or follow a multifractal analysis similar to the one given in [40]. 

Figure l(a) corresponds to the smallest energy and smallest disorder ( E  = 0, W = 1.8). 
Typical curdling of the amplitude of the wavefunction can clearly be seen and would indicate 
the fractal entities as described above. Figures l(b) and l(c) display the eigenstates of higher 
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Figure 1. Probability amplitude of wave packets on a square lattice of size N = SO x SO sites. 
We start from (a) E = 0, W = 1.8 then the energy is increased to (b) E = 2 and (c) E = 4. 
Then we restart from (a) and the disorder is increased to (d) W = 6.2, (e) W = 10.4 and 
{ f )  W = 16. The ensemble averaging in all these figures includes 12 realizations. Every site 
with an amplitude larger than the average (1ei.I > N - ' 1 2 )  is shown. Four different grey levels 
( j  = 0. I ,  2 . 3 )  are used to distinguish whether efn > 2 J / N .  

energy ( E  = 2 and E = 4, respectively) but for the same disorder, W = 1.8, as in figure 
l(a). While one expects more and more localization to occur, it seems that the eigenstate 
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of energy E = 2 is more homogeneously spread and, therefore, more delocalized than 
that of E = 0. From this observation only, one would expect the former eigenstate to 
have the highest participation number (which is a measure [I51 for the number of sites 
participating in a given eigenstate at energy E and thus a measure of delocalization). In 
fact, our d.c. conductivity (see figure 4 below) has its maximum value (at about E = 1.5) 
close to E rr 2 when W = 1.8. From figure l(c) it is clear that the eigenstates at the 
band tail ( E  = 4) are more localized because the number of speckles decreases but their 
average size increases as well as the maximal amplitudes. This is also corroborated by OUT 

d.c. conductivity results (see figure 4(a) below), where o(E = 4) is not only much lower 
than u ( E  < 4) but is also of the order of omin. Figures I(d) to I(f)  display the eigenstates 
of E = 0 with increasing disorder (W = 6.2. 10.4 and 16, respectively). When increasing 
the disorder at fixed energy ( E  = 0) stronger and stronger microclusters (speckles) appear 
with increasingly broad valleys in between and the wavefunction appears more and more 
localized. Figure l ( f )  displays strong localization; analysing the exponential decay of this 
function yields a localization length equal to the lattice spacing (A % 1 site). It is important 
to note, however, that in spite of this localization length the state is not restricted to mainly 
one site, but consists of a number of similar speckles. This number is only partly due to the 
construction of the state as a wave packet from several strongly localized eigenfunctions. 
Even the individual eigenfunctions consist of more than one speckle. 

Table 1 gives the localization lengths [41-43] and fractal dimensions [I61 at the band 
centre ( E  = 0) corresponding to the disorders used in figure I .  Note that as the disorder 
increases, the localization length A decreases and also the fractal dimension d' becomes 
smaller as a consequence of the stronger localization. We would like to make the following 
remarks about the density plots of figure 1. (i) The case of the most localized eigenstate 
is obviously figure l ( f )  (where E = 0 and W = 16) and the least localized state is 
the one of figure I@) (where E = 2 and W = 1.8). (ii) With respect to this finite 
sample size, the states of figures I@), l(e) and I(f)  are localized as confirmed in our 
d.c. conductivity calculation, where their corresponding o ( E )  is less than Mott's minimum 
metallic conductivity (omin - 0.1e2/h). (iii) When decreasing the disorder, more and more 
microclusters (speckles) appear, which support a significant amount of the wavefunction. 
At some critical disorder We, these clusters join and allow a percolation-like path through 
the sample as depicted already in figure l(a). Of course, it is understood that this is different 
from the classical percolation because we consider here a quantum system where tunnelling 
is allowed. Neverthless, it can bring a vivid picture of localization of the electronic density. 
Another interpretation follows from the necessity to apply contacts to the sample in order 
to measure a conductivity: in the case of small speckles (or, equivalently, small fractal 
dimension) the probability density at the contacts is too small to sustain the current. If one 
imagines, for example, a wavefunction with fractal dimension two on a 3D finite lattice, 
then the effective contact is of fractal dimension one if the entire sides of the sample cube 
are contacted. 

Now, we discuss our d.c. conductivity results. In figure 2, we show the results of 
both density of states (DOS) (in units of 1 eV-') and d.c. conductivity o ( E )  (in units of 
e 2 / h )  which is the same as conductance in 2D for a sample of size 20 x 20 sites with 
disorders ranging from W = 1 to 16. The plots are shown for half the band E > 0 to 
obtain better ensemble averaging by taking the mean of the two band sides. We note the 
following points. (i) First, one clearly sees the expected decrease of conductivity with 
increasing disorder (W). Since the averaging over disorder includes about 256 realizations 
of the random potentials, the displayed conductance fluctuations are presumed to be mainly 
due to the finite-size effects. fii) For disorders W < 4, overall the conductivity follows 
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0.2 

0 1 '  ' 1  ' 3 1 ' ' " 
0 2 4 6 8 io 

Energy/V 
Figure 2. DOS (solid curves) and d.c. conductivity (dotted curves) for a sample of N = 20 x 20 
sites with the disorders (a) W = I ,  (b) W = 2, (c) W = 4, (d) W = 8 and (e) W = !6. The 
scale IS in units of 1 eV" for the DOS and in units of e2/h for the mndunivity. The ensemble 
averaging comprises 256 realizations. Note that " ( E )  in (a) and (b) is reduced by a factor of 
30 and seven, respectively. 

the density of states profile, but vanishes already for energies smaller than the band tails, 
where the DOS remains substantial. This may suggest a 'pseudomobility edge' separating 
two types of state: the inner states towards midband are more conducting and therefore 
less localized than the states on the outer sides of the 'pseudomobility' edges. (iii) For 
disorders U' > 8, however, it seems that all states are localized as long as o ( E )  is less 
than u,,,jn. This is also consistent with the estimated localization lengths listed in table 1, 
namely A c L .  

Similar observations can be made for larger samples of sizes 30 x 30 and 50 x 50 sites 
from the results displayed in figures 3 and 4, respectively. These figures may give an idea 
about the scaling of conductance. For weak disorders (W = 1.8,2.6 and 3.6), for which 
the localization len,$hs are much bigger than these sample sizes (see table l), the results 
suggest that the conductance falls monotonically with increasing lattice size. For higher 
disorder (W > 6.7), however, the results suggest that all the states are strongly localized as 
a(E)  c umin over all the band. This latter is consistent with the small values of localization 
lengths of table 1 .  Of course, a definite proof of the strong localization of the full band for 
any disorder requires much larger samples and this was beyond our limited computational 
means. Lastly we note that the displayed curves in figures 3(e) and 4(e) correspond to two 
different disorders W = 6.7 and 6.2 respectively. These disorder values yield o(0) - umin. 
This s e e m  reasonable as larger samples require smaller critical disorder W, to make all 
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........... 
21--.... .̂ 

0.1 .._.: ..i.X.. 

........ 
(f) ll-7.3 

.......... ,._."...... ....__. ........... 5 .._. - ._. r._. 
0.1 

0 
.. 

(g) W-10.4 

0 1 2 3 4 5 6 7 8  

Energy/V 
Figure 3. Same as figure 2 but for a sample of s i 2  N = 30 x 30 sites with disorders (a) 
W = 1.8, (b) W = 2 6 .  (c) W = 3.6, (d) IV  = 5.2, (e) W = 6.7, (f) W = 7.3. (g) W = 10.4. 
The ensemble averaging includes 56 realiwtions. 

their states strongly localized when the localization length A. becomes smaller than L. 
For completeness, we have compiled in figure 5(a) some available estimations in the 

literature of the localization lengths at the band centre h(E = 0) versus disorder W. In this 
figure 5(a), the data shown in open circles (0 )  and crosses (x)  have been obtained from 
the calculation of transmission probability using the strip (bar) method in [431 and [41] 
respectively. However the data shown in triangles (A) are obtained from the potential well 
analogy method (421. In figure 5(b), we display the fractal dimension d' at the midband 
(E = 0) for various disorders reported in [16] from participation number calculations. 

The next point we would like to discuss is what will happen when the sample size is 
scaled only in one ( x  or y) direction. For this, we fixed the disorder W = 6. Figure 6 shows 
the scaling of conductance in the x direction for samples of sizes varying from 10 x 30 
to 70 x 30 sites. To get a clearer idea, we have presented the calculations of u(E) on an 
expanded scale for only three samples in figure 7. Large fluctuations of the conductance as 
E varies over the band are clearly observed. These are presumed to be partly due to disorder 
(the universal conductance fluctuation, which is essentially a quantum effect governed by 
quantum tunnelling and interference) and partly due to the finite-size effects. 

Figure 8, however, displays the finite-size scaling of conductivity in the y direction 
for samples of sizes ranging from 30 x 10 to 30 x 70 sites. Similarly, we have drawn 
the u(E) results in figure 9 on an expanded scale for only three samples. As one might 
intuitively predict, the conductivity u(E) seems to increase with the growing of the y side 
of the sample. We again emphasize that the conductivity is calculated in the x direction as 
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Figure 4. Same as figure 3 but for a sample of size N = 50 x 50 sites. Here, 12 realizations 
are included in the ensemble averaging. Note that the disorder in (e) is W = 6.2, different from 
tha! of figure 3(e). 

- Figure 5. (a) The logarithm of localization length A(E = 0) 
as a function of disorder W for a square lattice is compiled 
h m  three different sources: triangles (A) due b [42], open 
circles (0) due to 1431 and crosses (x) due to [41]. (b) 
Fractal dimension at band centre d*(E = 0) due to [16]. 
Note that the disorder scale in both (a) and (b) stam from 

'p l.:rj 
2 1  

0.5 
0 

2o 5 10 15 

w/v W f V = 1 . 5 .  

explicitly indicated in (3). This growing conductivity with increasing y side sample sizes 
can be explained by the increase of the number of tunnelling channels or, as mentioned 
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Figure 7. The d,c. conductivity for some of the samples displayed in figure 6. 
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Energy/V 
Figure 8. Same as figure 6 but the sample is scaled this time in the y-direction. 

_ _ _ _ _ -  
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r , , ,  
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Figure 9. The d.c. conducttvity for some of the samples displayed in figure 8 

above, interpreted by the increase of the contact area. 
Throughout our discussion of the d.c. conductivity results versus disorder (namely those 

displayed in figures 2 to 4). the existence of a critical disorder W, can be inferred depending 
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on the sample size beyond which all the eigenstates are localized. Our results shown in 
figures 3 and 4, due to the respective samples of sizes 30 x 30 and 50 x 50 sites, have 
suggested critical disorders W, % 6.7 and 6.2 and corresponding critical fractal dimensions 
d, = 1.31 and 1.37, respectively, according to table 1 and figure 5. The highest estimations 
of localization lengths (table 1) for these two respective disorders are ,I N 28 and 44 
sites, which are smaller than but of the same order as the respective sample sizes. As the 
conductivity in infinite 2D systems is expected to vanish, one would expect W, to diminish 
with increasing sample sizes. In consistency with this, our preliminary d.c. conductivity 
results on a sample of 100 x 100 sites at the midband, u(E = 0). suggested a critical 
disorder of W, = 5.5 corresponding to u ( E  = 0) umin. Again, this is consistent with the 
fact that the largest estimated localization length, ,I N 94 lattice spacings, is less than L (see 
table I). By an interpolation of the results of [16] (see figure 5(b)), we estimated dr N 1.48 
to correspond to W, = 5.5. For a detailed analysis in this way, even larger systems than 
previously studied have to be taken into account to estimate the upper bound of d,' which 
is asymptotically reached in infinite systems. The error bar in determining d: is large (of 
order 0.2) because we cannot determine W, precisely from the conductivity plots. This error 
can be explained first as reflecting the continuous transition aspect which makes it difficult 
to pinpoint the disorder at which umin is exceeded and second as due to the relatively small 
sample sizes used in our calculations which means relatively large fluctuations from sample 
to sample. We took the value of d: from our largest studied sample (of size N = 100 x 100 
sites) as an average value with its error bar of Adz = 0.17. This estimated critical fractal 
dimension df = 1.48 * 0.17 appears reasonable because, as shown in figure 5(b), the fractal 
dimension does not increase strongly for even smaller values of W, which are expected for 
larger sample sizes as discussed above. Consequently, while the d, values obtained for the 
smaller system sizes are definitely too small, we are confident that d: = 1.48 is a reasonable 
estimate. Moreover, this value of d," lies between the fractal dimension, reported by Aoki 
[27], of the most extended states in a 2D system with strong perpendicular magnetic field, 
d' = 1.57 zk 0.03, and the one reported by Ono eral [44], de = 1.39. 

Finally, we discuss the effect of localization on the transport properties at finite 
temperature. In the fractal picture described in this paper, transport between the different 
speckles in the strong-localization limit takes place by hopping processes, where the areas 
between the speckles can be associated with effective potential barriers. The behaviour of 
the Conductivity at low lemperature is of type U - exp[-(TO/T)'] and is characterized 
by the exponent a. In the regime of strongly localized states, the transport can therefore 
be described by the variable-range (phonon-assisted) hopping theory 1451 which yields the 
conductivity 
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where the conductivity exponent a = I/(d+ l), ford  21, yields the well known T-'I4 law 
in 3D. We recall that if the Coulomb interactions are important, one gets an exponent a = 1 
as predicted by Efros and Shklowskii [46]. In a more recent model [25] ,  the electron is 
(almost) restricted to move on a sublattice which is fractal over some range of length scales. 
Associating with this electron a superlocalized wavefunction at the percolation threshold, 
IW(r)l - exp[-r'] where F is the superlocalization exponent, and neglecting the Coulomb 
interactions, Deutscher et al [25] showed that the hopping conductivity between such states 
on the fractal behaves as given by the preceding equation with a = c/(d, + F). Using the 
Alexander-Orbach conjecture d = d f / <  = $, the authors of [25] found the superuniversal 
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result U = 3. This is not very far from the exponent 1451 except that Coulomb interactions 
are absent. This latter model 1251 should apply to systems where intercluster tunnelling is 
negligible such as atomically disordered mixtures and granular materials. At small length 
scales, however, the electron does not feel that the medium is fractal and for systems without 
interactions one expects formula (4) to describe the conductivity behaviour. 

With decreasing localization (disorder), in our present model, the speckles become closer 
and closer and more and more speckles of the wave packet belong to a single wavefunction 
so that the tunnelling becomes easier until finally percolation-like paths through the entire 
sample are possible supporting the current. In this context we recall that, as transport is 
usually concerned with a wave packet travelling through the system, we have already taken 
this into account in our density plots shown in figure 1. We emphasize further that it has 
been demonstrated [40] that the wave packet also maintains the multifractal behaviour and 
follows the characteristics of the central single state. 

On the supposition that the information dimension, D I ,  should be utilized in this 
localized regime, one obtains a different temperature dependence of the conductivity. The 
power in the exponent would be larger than a in 3D and larger than 5 in 2D systems as 
suggested by Aoki [27] because D, is found [40] to be less than the Euclidean dimension 
d .  Moreover, the dimension D1 decreases significantly with increasing disorder, yielding a 
further increase in the exponent of 1/T and a diminution in conductivity as a consequence. 

In the metallic regime, on the other hand, the conductivity can be related to the density- 
density correlation function by means of the Kubo formula [44]. Hence, it can be expected 
that the fractal correlation dimension DZ (=d* here) is the significant dimension for the 
description of transport properties in this regime. 

4. Conelusions 

The nature of localization of the disordered two-dimensional Anderson eigenfunctions was 
studied using our density of states and d.c. conductivity calculations. The fractal correlation 
dimension Dz (= d*) is suggested to characterize this localization (i.e., to discriminate 
between the exponentially and power-law-localized states). Using our d.c. conductivity 
results, the eigenstates of energy IEl/V N 1.5 are found to be more delocalized than those 
at the band centre ( E  = 0) for the studied samples. The d.c. conductivity diminishes with 
increasing disorder reflecting stronger localization. This could also be observed through the 
increase of the curdling of the wavefunction in the density plots. The transition from the 
exponential to power law localization is believed to be continuous. 

For a fixed sample size, there exists a critical disorder (W,) for the exponential 
localization of all its eigenfunctions. Taking Mott's minimum metallic conductivity as 
a criterion for the exponential localization, we determined the critical disorders (W,) for all 
our studied square lattices. In this respect, our d.c. conductivity results are consistent with 
the existing localization lengths in the literature. The fractal dimensions corresponding to 
the W, values were obtained from the work of [16]. Based on the results of the sample 
of size 100 x 100 sites, we estimated a critical fractal dimension d,* = 1.48 2z 0.17 
to discriminate between the exponentially and power-law-localized states. This fractal 
(correlation) dimension is expected to be responsible for the conductivity mainly in the 
metallic regime. 

Finally, our d,* value should be tested further using larger sample sizes. This together 
with an attempt to draw the trajectory of the 'pseudomobility edge', separating the 
exponentially and the power-law localized states, in the disorder-energy (W-E, plane for 
various sample sizes are considered in our future work. 
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